Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

N-[(6-Bromo-2-methoxy-3-quinolyl)phenylmethyl]-2-morpholino-N-(1phenylethyl)acetamide

Zhi-Qiang Cai,^a Gang Xiong,^b Shan-Rong Li,^a Jian-Bo Liu^a and Tie-Min Sun^a*

^aCollege of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China, and ^bLaboratory of Coordination Chemistry, Shenyang Institute of Chemical Technology, Shenyang 110142, People's Republic of China

Correspondence e-mail: suntiemin@gmail.com

Received 12 June 2009; accepted 10 July 2009

Key indicators: single-crystal X-ray study; T = 298 K; mean σ (C–C) = 0.011 Å; R factor = 0.076; wR factor = 0.236; data-to-parameter ratio = 11.0.

In the title compound, C₃₁H₃₂BrN₃O₃, the morpholine ring adopts a chair conformation, and the planar quinoline system is twisted with respect to the phenyl rings, with dihedral angles of 17.6 (4) and 75.1 (3)°. Intramolecular $C-H \cdots O$ and C- $H \cdots N$ hydrogen bonds are present. The crystal packing is stabilized by weak C-H···O hydrogen bonding and C- $H \cdot \cdot \pi$ interactions.

Related literature

For the synthesis of other phamaceutically active derivatives through conventional and other synthetic routes, see: Andries et al. (2005); Gaurrand et al. (2006); Mao et al. (2007); Dalla Via et al. (2008). For related structures, see: Petit et al. (2007); Rahmani et al. (2009).

Br

Experimental

Crystal data

$C_{31}H_{32}BrN_3O_3$	a = 7.8696 (14) Å
$M_r = 574.50$	b = 9.4558 (16) Å
friclinic, P1	c = 9.8018 (17) Å

 $\alpha = 90.544 \ (2)^{\circ}$ $\beta = 100.562 \ (3)^{\circ}$ $\gamma = 104.618 \ (2)^{\circ}$ V = 692.6 (2) Å³ Z = 1

Data collection

Bruker SMART APEX CCD
diffractometer
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
$T_{\min} = 0.525, \ T_{\max} = 0.625$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.076$	H-atom parameters constrained
$wR(F^2) = 0.236$	$\Delta \rho_{\rm max} = 0.66 \ {\rm e} \ {\rm \AA}^{-3}$
S = 1.02	$\Delta \rho_{\rm min} = -0.47 \ {\rm e} \ {\rm \AA}^{-3}$
3796 reflections	Absolute structure: Flack (1983),
346 parameters	1149 Friedel pairs
4 restraints	Flack parameter: 0.14 (2)

Table 1 Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
C8-H8···N3	0.98	2.55	3.105 (7)	116
C25-H25···O2	0.93	2.45	3.153 (7)	133
$C30-H30O2^{i}$	0.93	2.59	3.399 (10)	145
$C7 - H7B \cdots Cg4^{ii}$	0.96	3.15	3.988 (8)	147
$C23 - H23 \cdots Cg5^{iii}$	0.93	2.79	3.662 (8)	157

Symmetry codes: (i) x - 1, y, z; (ii) x, y, z + 1; (iii) x + 1, y, z. Cg4 and Cg5 are the centroids of the O3,C1,C2,N3,C3,C4 and C27-C32 rings, respectively.

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

The authors acknowledge the College of Chemical Science and Engineering of Liaoning University for the X-ray data collection.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: XU2541).

References

- Andries, K., Verhasselt, P., Guillemont, J., Göhlmann, H. W. H., Neefs, J. M., Winkler, H., Gestel, J. V., Timmerman, P., Zhu, M., Lee, E., Williams, P., de Chaffoy, D., Huitric, E., Hoffner, S., Cambau, E., Truffot-Pernot, C., Lounis, N. & Jarlier, V. (2005). Science, 307, 223-227.
- Bruker (2001). SAINT, SMART and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
- Dalla Via, L., Gia, O., Gasparotto, V. & Ferlin, M. G. (2008). Eur. J. Med. Chem. 43, 429-434.
- Flack, H. D. (1983). Acta Cryst. A39, 876-881.
- Gaurrand, S., Desjardins, S., Meyer, C., Bonnet, P., Argoullon, J.-M., Qulyadi, H. & Guillemont, J. (2006). Chem. Biol. Drug Des. 68, 77-84.
- Mao, J. L., Wang, Y. H., Wan, B. J., Kozikowski, A. P. & Franzblau, S. G. (2007). ChemMedChem, 2, 1624-1630.
- Petit, S., Coquerel, G., Meyer, C. & Guillemont, J. (2007). J. Mol. Struct. 837, 252-256.

Rahmani, H., Pirelahi, H. & Ng, S. W. (2009). Acta Cryst. E65, o603.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

Mo $K\alpha$ radiation

 $0.45 \times 0.33 \times 0.31 \text{ mm}$

4628 measured reflections 3796 independent reflections

2917 reflections with $I > 2\sigma(I)$

 $\mu = 1.52 \text{ mm}^{-1}$

T = 298 K

 $R_{\rm int} = 0.019$

Acta Cryst. (2009). E65, o1901 [doi:10.1107/S1600536809027020]

N-[(6-Bromo-2-methoxy-3-quinolyl)phenylmethyl]-2-morpholino-N-(1-phenylethyl)acetamide

Z.-Q. Cai, G. Xiong, S.-R. Li, J.-B. Liu and T.-M. Sun

Comment

The quinolines and their derivatives as a class of extremely important heterocyclic compounds are used in a wide array of synthetic and medcinal applications. Some quinoline derivatives can give effective and good quality drugs treating many cancers (Dalla Via *et al.*, 2008), and also used as antifungals and antituberculostatics drugs (Andries *et al.*, 2005; Mao *et al.*, 2007; Gaurrand *et al.*, 2006). We report herein the crystal structure of the title compound.

In the molecule of the title compound (Fig 1), the morpholine system exists in a chair conformation. The dihedral angles of aromatic rings are different from related structure TMC-207 (Petit *et al.*, 2007; Rahmani *et al.*, 2009), which has been completed Phase II clinical, and will be marked in 2012 as a kind of antituberculostatics drug. The dihedral angle between phenyl ring [C9—C14] and substituted quinolinyl groups is 17.6 (4)°, the dihedral angle between phenyl ring [C27—C32] and substituted quinolinyl groups is 75.1 (3)°, and the dihedral angle between phenyl ring [C9—C14] and phenyl ring[C27—C32] is 68.3 (4)°; while the dihedral angles between phenyl and substituted quinolinyl groups in related structure TMC-207 is 97.4°, and naphthalenyl and substituted quinolinyl groups is nearly coplanar. The distance of the centroids between the phenyl ring [C9—C14] and the ring containing N of the substituted quinolinyl groups is 3.598 Å. The results suggest that the differences between them are caused by steric three-dimensional space. The structural cohesion of the title compound is ensured by weaker contacts. The C—H…O and C—H…N hydrogen bonding is present in the crystal structure (Table 1).

Experimental

To a solution of *N*-((6-bromo-2-methoxyquinolin-3-yl)phenylmethyl)-2- chloro-*N*-(1-phenylethyl)acetamide (1 mmol) and potassium carbonate (5 mmol) in acetonitrile (50 ml), morpholine (1 mmol) was added. The mixture was stirred for 6 h below 353 K. The reaction mixture was left for 2 h and then diluted with water (50 ml). The resulting precipitate was collected by extraction, distillation and purified on silica gel column (30% ethyl acetate in hexane) to give white powder (91.2% yield). Crystals suitable for X-ray analysis were obtained from acetonitrile solution by slow evaporation.

Refinement

All H atoms were geometrically positioned (C—H 0.93–0.98 Å) and treated as riding, with $U_{iso}(H) = 1.5U_{eq}(C)$ for methyl H atoms and $1.2U_{eq}(C)$ for the others.

Figures

Fig. 1. The structure of the title compound with all non-H atom-labeling scheme and ellipsoids drawn at the 30% probability level.

N-[(6-Bromo-2-methoxy-3-quinolyl)phenylmethyl]-2-morpholino- N-(1-phenylethyl)acetamide

Crystal data	
C ₃₁ H ₃₂ BrN ₃ O ₃	Z = 1
$M_r = 574.50$	$F_{000} = 298$
Triclinic, P1	$D_{\rm x} = 1.377 \ {\rm Mg \ m}^{-3}$
Hall symbol: P 1	Mo <i>K</i> α radiation, $\lambda = 0.71073$ Å
a = 7.8696 (14) Å	Cell parameters from 3537 reflections
<i>b</i> = 9.4558 (16) Å	$\theta = 2.1 - 25.9^{\circ}$
c = 9.8018 (17) Å	$\mu = 1.52 \text{ mm}^{-1}$
$\alpha = 90.544 \ (2)^{\circ}$	T = 298 K
$\beta = 100.562 \ (3)^{\circ}$	Prism, colorless
$\gamma = 104.618 \ (2)^{\circ}$	$0.45 \times 0.33 \times 0.31 \text{ mm}$
$V = 692.6 (2) \text{ Å}^3$	

Data collection

Bruker SMART APEX CCD diffractometer	3796 independent reflections
Radiation source: fine-focus sealed tube	2917 reflections with $I > 2\sigma(I)$
Monochromator: graphite	$R_{\rm int} = 0.019$
T = 298 K	$\theta_{\text{max}} = 25.9^{\circ}$
ϕ and ω scans	$\theta_{\min} = 2.1^{\circ}$
Absorption correction: multi-scan (SADABS; Bruker, 2001)	$h = -9 \rightarrow 8$
$T_{\min} = 0.525, T_{\max} = 0.625$	$k = -11 \rightarrow 11$
4628 measured reflections	$l = -10 \rightarrow 12$

Refinement

Refinement on F^2	Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: full	H-atom parameters constrained
$R[F^2 > 2\sigma(F^2)] = 0.076$	$w = 1/[\sigma^{2}(F_{o}^{2}) + (0.1743P)^{2}]$ where $P = (F_{o}^{2} + 2F_{c}^{2})/3$
$wR(F^2) = 0.236$	$(\Delta/\sigma)_{\rm max} < 0.001$
<i>S</i> = 1.02	$\Delta \rho_{max} = 0.66 \text{ e } \text{\AA}^{-3}$
3796 reflections	$\Delta \rho_{min} = -0.46 \text{ e } \text{\AA}^{-3}$
346 parameters	Extinction correction: none
4 restraints	Absolute structure: Flack (1983), 1149 Friedel pairs
Primary atom site location: structure-invariant direct methods	Flack parameter: 0.14 (2)
Conservations site la setient differences Founier man	

Secondary atom site location: difference Fourier map

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

	x	У	Ζ	$U_{\rm iso}*/U_{\rm eq}$
Br1	1.24839 (17)	0.39015 (15)	-0.05433 (14)	0.1036 (5)
C4	0.3479 (12)	-0.0267 (12)	0.8340 (10)	0.072 (2)
H4A	0.3364	0.0712	0.8523	0.087*
H4B	0.2288	-0.0899	0.8016	0.087*
C3	0.4565 (11)	-0.0236 (10)	0.7234 (9)	0.0593 (19)
H3A	0.4610	-0.1223	0.6999	0.071*
H3B	0.4007	0.0147	0.6404	0.071*
C1	0.5983 (15)	0.0096 (16)	1.0047 (11)	0.093 (3)
H1A	0.6513	-0.0286	1.0889	0.111*
H1B	0.5928	0.1083	1.0274	0.111*
C2	0.7147 (14)	0.0142 (12)	0.8971 (10)	0.078 (3)
H2A	0.8328	0.0777	0.9322	0.093*
H2B	0.7273	-0.0833	0.8788	0.093*
C5	0.7473 (10)	0.0755 (8)	0.6650 (7)	0.0459 (16)
H5A	0.7580	-0.0218	0.6433	0.055*
H5B	0.8664	0.1365	0.7020	0.055*
C6	0.6689 (8)	0.1390 (6)	0.5298 (6)	0.0317 (12)
C7	0.5793 (12)	0.4161 (8)	0.7307 (9)	0.060 (2)
H7A	0.5232	0.4804	0.6745	0.090*
H7B	0.6332	0.4632	0.8210	0.090*
H7C	0.4911	0.3276	0.7400	0.090*
C8	0.7214 (9)	0.3799 (6)	0.6625 (6)	0.0373 (14)
H8	0.7906	0.3306	0.7307	0.045*
С9	0.8530 (10)	0.5077 (7)	0.6180 (6)	0.0398 (14)
C14	1.0104 (10)	0.4857 (8)	0.5883 (9)	0.0508 (16)
H14	1.0386	0.3971	0.6065	0.061*
C13	1.1252 (11)	0.5939 (9)	0.5320 (10)	0.059 (2)
H13	1.2287	0.5758	0.5112	0.070*
C12	1.0920 (12)	0.7264 (8)	0.5058 (10)	0.063 (2)
H12	1.1741	0.7998	0.4721	0.076*
C11	0.9277 (13)	0.7502 (8)	0.5314 (11)	0.066 (2)
H11	0.8944	0.8352	0.5058	0.079*
C10	0.8187 (11)	0.6417 (7)	0.5959 (9)	0.0532 (18)

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

H10	0.7201	0.6609	0.6246	0.064*
C15	0.5369 (8)	0.3306 (6)	0.4201 (6)	0.0350 (13)
H15	0.4995	0.4106	0.4600	0.042*
C17	0.6440 (8)	0.4009 (6)	0.3131 (6)	0.0332 (13)
C18	0.6119 (8)	0.5339 (6)	0.2557 (6)	0.0328 (12)
C19	0.8276 (8)	0.5586 (6)	0.1238 (6)	0.0353 (13)
C20	0.9212 (10)	0.6379 (8)	0.0287 (7)	0.0461 (16)
H20	0.8967	0.7252	-0.0003	0.055*
C21	1.0491 (11)	0.5886 (8)	-0.0229 (8)	0.0540 (18)
H21	1.1107	0.6423	-0.0859	0.065*
C22	1.0847 (9)	0.4566 (8)	0.0209 (7)	0.0498 (17)
C23	0.9987 (10)	0.3773 (7)	0.1165 (7)	0.0419 (14)
H23	1.0267	0.2912	0.1457	0.050*
C24	0.8690 (8)	0.4261 (6)	0.1699 (6)	0.0357 (13)
C25	0.7735 (8)	0.3516 (6)	0.2667 (6)	0.0323 (12)
H25	0.7992	0.2662	0.3004	0.039*
C26	0.4505 (13)	0.7175 (8)	0.2544 (10)	0.067 (2)
H26A	0.5093	0.7945	0.3245	0.101*
H26B	0.3242	0.7092	0.2360	0.101*
H26C	0.4966	0.7396	0.1707	0.101*
C31	0.2225 (10)	0.1953 (8)	0.4322 (9)	0.0499 (17)
H31	0.2364	0.2511	0.5141	0.060*
C30	0.0646 (10)	0.0914 (9)	0.3835 (11)	0.062 (2)
H30	-0.0274	0.0771	0.4335	0.074*
C29	0.0405 (10)	0.0078 (10)	0.2614 (12)	0.065 (2)
H29	-0.0676	-0.0608	0.2286	0.078*
C28	0.1781 (13)	0.0275 (10)	0.1892 (11)	0.072 (3)
H28	0.1658	-0.0303	0.1090	0.086*
C27	0.3378 (8)	0.1360 (7)	0.2379 (8)	0.0468 (16)
H27	0.4287	0.1530	0.1867	0.056*
C32	0.3609 (9)	0.2165 (7)	0.3588 (7)	0.0383 (14)
N1	0.7011 (8)	0.6132 (5)	0.1700 (6)	0.0387 (12)
N2	0.6404 (7)	0.2747 (5)	0.5409 (5)	0.0327 (10)
N3	0.6363 (7)	0.0673 (5)	0.7712 (6)	0.0411 (12)
01	0.4833 (7)	0.5790 (4)	0.3030 (5)	0.0468 (12)
O2	0.6376 (6)	0.0666 (4)	0.4219 (5)	0.0418 (10)
O3	0.4266 (10)	-0.0772 (9)	0.9568 (7)	0.088 (2)

Atomic displacement parameters (\AA^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Br1	0.1037 (8)	0.1453 (11)	0.0862 (8)	0.0497 (7)	0.0549 (6)	0.0297 (7)
C4	0.056 (5)	0.088 (6)	0.069 (6)	-0.001 (4)	0.029 (4)	0.021 (5)
C3	0.058 (5)	0.071 (5)	0.048 (4)	0.009 (4)	0.017 (3)	0.017 (4)
C1	0.074 (7)	0.142 (9)	0.057 (6)	0.010(7)	0.025 (5)	0.039 (6)
C2	0.090 (7)	0.089 (6)	0.050 (5)	0.011 (5)	0.016 (5)	0.042 (5)
C5	0.052 (4)	0.058 (4)	0.041 (4)	0.028 (3)	0.024 (3)	0.021 (3)
C6	0.036 (3)	0.029 (3)	0.035 (3)	0.010 (2)	0.018 (2)	0.012 (2)

C7	0.077 (5)	0.050 (4)	0.053 (5)	-0.005 (4)	0.043 (4)	-0.015 (3)
C8	0.049 (4)	0.035 (3)	0.027 (3)	0.005 (3)	0.014 (3)	0.004 (2)
C9	0.055 (4)	0.037 (3)	0.026 (3)	0.008 (3)	0.009 (3)	0.001 (2)
C14	0.048 (4)	0.049 (4)	0.058 (5)	0.011 (3)	0.020 (3)	0.012 (3)
C13	0.039 (4)	0.071 (5)	0.073 (6)	0.015 (3)	0.029 (4)	0.024 (4)
C12	0.071 (5)	0.049 (4)	0.064 (5)	-0.002 (4)	0.021 (4)	0.004 (4)
C11	0.080 (6)	0.039 (3)	0.084 (6)	0.006 (4)	0.042 (5)	0.015 (4)
C10	0.061 (4)	0.041 (3)	0.067 (5)	0.015 (3)	0.034 (4)	0.001 (3)
C15	0.043 (3)	0.033 (3)	0.037 (3)	0.017 (2)	0.020 (3)	0.014 (2)
C17	0.042 (3)	0.028 (3)	0.029 (3)	0.005 (2)	0.009 (2)	0.005 (2)
C18	0.032 (3)	0.032 (3)	0.034 (3)	0.007 (2)	0.010 (2)	0.007 (2)
C19	0.039 (3)	0.039 (3)	0.024 (3)	0.001 (2)	0.008 (2)	0.008 (2)
C20	0.052 (4)	0.048 (3)	0.038 (4)	0.005 (3)	0.018 (3)	0.019 (3)
C21	0.071 (5)	0.058 (4)	0.038 (4)	0.009 (4)	0.033 (3)	0.026 (3)
C22	0.044 (4)	0.071 (5)	0.035 (4)	0.010 (3)	0.018 (3)	0.008 (3)
C23	0.048 (4)	0.051 (3)	0.032 (3)	0.016 (3)	0.019 (3)	0.014 (3)
C24	0.036 (3)	0.040 (3)	0.028 (3)	0.005 (2)	0.005 (2)	0.005 (2)
C25	0.037 (3)	0.035 (3)	0.032 (3)	0.011 (2)	0.020 (2)	0.017 (2)
C26	0.087 (6)	0.051 (4)	0.093 (7)	0.046 (4)	0.051 (5)	0.045 (4)
C31	0.056 (4)	0.052 (4)	0.058 (4)	0.029 (3)	0.031 (3)	0.023 (3)
C30	0.034 (4)	0.061 (4)	0.102 (7)	0.017 (3)	0.033 (4)	0.048 (5)
C29	0.036 (4)	0.064 (5)	0.090 (7)	0.003 (3)	0.012 (4)	0.031 (5)
C28	0.067 (6)	0.066 (5)	0.065 (6)	-0.002 (4)	-0.003 (5)	0.000 (4)
C27	0.026 (3)	0.058 (4)	0.055 (4)	0.000 (3)	0.018 (3)	0.003 (3)
C32	0.036 (3)	0.044 (3)	0.040 (4)	0.014 (3)	0.015 (3)	0.017 (3)
N1	0.045 (3)	0.037 (2)	0.034 (3)	0.005 (2)	0.015 (2)	0.009 (2)
N2	0.040 (3)	0.035 (2)	0.025 (2)	0.009 (2)	0.013 (2)	0.0047 (19)
N3	0.047 (3)	0.041 (3)	0.038 (3)	0.011 (2)	0.014 (2)	0.012 (2)
01	0.062 (3)	0.036 (2)	0.055 (3)	0.023 (2)	0.030 (2)	0.021 (2)
02	0.049 (3)	0.037 (2)	0.044 (3)	0.0130 (19)	0.018 (2)	0.0039 (19)
03	0.090 (5)	0.117 (5)	0.062 (4)	0.017 (4)	0.036 (4)	0.051 (4)

Geometric parameters (Å, °)

1.829 (8)	C15—N2	1.490 (8)
1.396 (12)	C15—C17	1.519 (9)
1.495 (13)	C15—C32	1.540 (9)
0.9700	C15—H15	0.9800
0.9700	C17—C25	1.367 (9)
1.448 (10)	C17—C18	1.444 (8)
0.9700	C18—N1	1.313 (8)
0.9700	C18—N1	1.313 (8)
1.386 (13)	C18—O1	1.344 (8)
1.513 (16)	C19—N1	1.372 (9)
0.9700	C19—N1	1.372 (9)
0.9700	C19—C20	1.400 (9)
1.430 (10)	C19—C24	1.429 (8)
0.9700	C20—C21	1.380 (11)
0.9700	C20—H20	0.9300
	1.829 (8) $1.396 (12)$ $1.495 (13)$ 0.9700 0.9700 $1.448 (10)$ 0.9700 $1.386 (13)$ $1.513 (16)$ 0.9700 $1.430 (10)$ 0.9700 0.9700	1.829(8) $C15-N2$ $1.396(12)$ $C15-C17$ $1.495(13)$ $C15-C32$ 0.9700 $C15-H15$ 0.9700 $C17-C25$ $1.448(10)$ $C17-C18$ 0.9700 $C18-N1$ 0.9700 $C18-N1$ $1.386(13)$ $C18-O1$ $1.513(16)$ $C19-N1$ 0.9700 $C19-N1$ 0.9700 $C19-C20$ $1.430(10)$ $C19-C24$ 0.9700 $C20-C21$ 0.9700 $C20-H20$

C5—N3	1.468 (9)	C21—C22	1.402 (11)
C5—C6	1.549 (8)	C21—H21	0.9300
С5—Н5А	0.9700	C22—C23	1.374 (10)
С5—Н5В	0.9700	C23—C24	1.400 (10)
C6—O2	1.206 (8)	С23—Н23	0.9300
C6—O2	1.206 (8)	C24—C25	1.403 (9)
C6—N2	1.364 (7)	C25—H25	0.9300
С7—С8	1.509 (10)	C26—O1	1.465 (7)
C7—H7A	0.9600	C26—H26A	0.9600
С7—Н7В	0.9600	C26—H26B	0.9600
С7—Н7С	0.9600	С26—Н26С	0.9600
C8—N2	1.482 (8)	C31—C30	1.377 (12)
C8—C9	1.506 (9)	C31—C32	1.387 (10)
C8—H8	0.9800	С31—Н31	0.9300
C9—C10	1.372 (9)	C30—C29	1.384 (15)
C9—C14	1.387 (10)	С30—Н30	0.9300
C14—C13	1.376 (12)	C29—C28	1.375 (14)
C14—H14	0.9300	С29—Н29	0.9300
C13—C12	1.361 (12)	C28—C27	1.407 (11)
С13—Н13	0.9300	C28—H28	0.9300
C12—C11	1.431 (13)	C27—C32	1.360 (11)
C12—H12	0.9300	C27—H27	0.9300
C11—C10	1.398 (12)	N1—N1	0.000
C11—H11	0.9300	02—02	0.000
C10—H10	0.9300		
O3—C4—C3	111.4 (8)	N2—C15—H15	104.8
O3—C4—H4A	109.3	C17—C15—H15	104.8
C3—C4—H4A	109.3	C32—C15—H15	104.8
O3—C4—H4B	109.3	C25—C17—C18	115.7 (5)
С3—С4—Н4В	109.3	C25—C17—C15	125.9 (5)
H4A—C4—H4B	108.0	C18—C17—C15	118.4 (5)
N3—C3—C4	110.2 (7)	N1-C18-O1	119.9 (5)
N3—C3—H3A	109.6	N1	119.9 (5)
С4—С3—НЗА	109.6	N1—C18—C17	125.8 (6)
N3—C3—H3B	109.6	N1—C18—C17	125.8 (6)
C4—C3—H3B	109.6	O1—C18—C17	114.1 (5)
НЗА—СЗ—НЗВ	108.1	N1-C19-C20	118.1 (6)
O3—C1—C2	111.4 (10)	N1—C19—C20	118.1 (6)
O3—C1—H1A	109.4	N1—C19—C24	122.9 (6)
C2—C1—H1A	109.4	N1—C19—C24	122.9 (6)
O3—C1—H1B	109.4	C20—C19—C24	118.9 (6)
C2—C1—H1B	109.4	C21—C20—C19	121.2 (6)
H1A—C1—H1B	108.0	C21—C20—H20	119.4
N3—C2—C1	110.1 (8)	C19—C20—H20	119.4
N3—C2—H2A	109.6	C20—C21—C22	119.0 (6)
C1—C2—H2A	109.6	C20—C21—H21	120.5
N3—C2—H2B	100 ((127 (121 H21	120.5
	109.6	C22—C21—H21	120.5
C1—C2—H2B	109.6	C22-C21-H21 C23-C22-C21	120.5

N3—C5—C6	112.5 (5)	C21—C22—Br1	118.1 (5)
N3—C5—H5A	109.1	C22—C23—C24	119.9 (6)
С6—С5—Н5А	109.1	С22—С23—Н23	120.0
N3—C5—H5B	109.1	С24—С23—Н23	120.0
С6—С5—Н5В	109.1	C23—C24—C25	123.8 (5)
H5A—C5—H5B	107.8	C23—C24—C19	119.3 (6)
O2—C6—N2	124.1 (5)	C25—C24—C19	116.9 (6)
O2—C6—N2	124.1 (5)	C17—C25—C24	121.9 (5)
O2—C6—C5	118.5 (5)	С17—С25—Н25	119.0
O2—C6—C5	118.5 (5)	С24—С25—Н25	119.0
N2	117.4 (5)	O1—C26—H26A	109.5
С8—С7—Н7А	109.5	O1—C26—H26B	109.5
С8—С7—Н7В	109.5	H26A—C26—H26B	109.5
H7A—C7—H7B	109.5	O1—C26—H26C	109.5
С8—С7—Н7С	109.5	H26A—C26—H26C	109.5
H7A—C7—H7C	109.5	H26B—C26—H26C	109.5
H7B—C7—H7C	109.5	C30—C31—C32	119.8 (8)
N2	108.4 (5)	С30—С31—Н31	120.1
N2—C8—C7	111.1 (5)	С32—С31—Н31	120.1
C9—C8—C7	116.3 (5)	C31—C30—C29	121.1 (8)
N2—C8—H8	106.9	С31—С30—Н30	119.4
С9—С8—Н8	106.9	С29—С30—Н30	119.4
С7—С8—Н8	106.9	C28—C29—C30	119.2 (8)
C10—C9—C14	118.5 (7)	С28—С29—Н29	120.4
C10—C9—C8	123.0 (6)	С30—С29—Н29	120.4
C14—C9—C8	118.3 (6)	C29—C28—C27	119.4 (9)
C13—C14—C9	120.5 (7)	C29—C28—H28	120.3
C13—C14—H14	119.7	C27—C28—H28	120.3
C9—C14—H14	119.7	C32—C27—C28	120.9 (8)
C12—C13—C14	122.1 (8)	С32—С27—Н27	119.5
C12—C13—H13	119.0	С28—С27—Н27	119.5
C14—C13—H13	119.0	C27—C32—C31	119.5 (6)
C13—C12—C11	118.4 (8)	C27—C32—C15	122.7 (6)
C13—C12—H12	120.8	C31—C32—C15	117.7 (6)
C11—C12—H12	120.8	C18—N1—C19	116.6 (5)
C10—C11—C12	118.1 (7)	C6—N2—C8	124.1 (5)
C10—C11—H11	121.0	C6—N2—C15	119.7 (5)
C12—C11—H11	121.0	C8—N2—C15	115.9 (4)
C9—C10—C11	121.9 (7)	C2—N3—C3	109.3 (6)
С9—С10—Н10	119.0	C2—N3—C5	111.6 (6)
С11—С10—Н10	119.0	C3—N3—C5	112.2 (6)
N2—C15—C17	115.4 (5)	C18—O1—C26	116.8 (5)
N2—C15—C32	111.3 (5)	C1—O3—C4	110.7 (7)
C17—C15—C32	114.6 (5)		
O3—C4—C3—N3	-57.5 (10)	C31—C30—C29—C28	1.2 (11)
O3—C1—C2—N3	57.8 (12)	C30—C29—C28—C27	-2.5 (12)
N3-C5-C6-O2	-123.0 (6)	C29—C28—C27—C32	3.3 (12)
N3-C5-C6-O2	-123.0 (6)	C28—C27—C32—C31	-2.6 (10)
N3—C5—C6—N2	57.3 (8)	C28—C27—C32—C15	176.7 (7)

N2-C8-C9-C10	104.9 (7)	C30-C31-C32-C27	1.2 (9)
C7—C8—C9—C10	-21.1 (9)	C30-C31-C32-C15	-178.1 (6)
N2-C8-C9-C14	-70.2 (7)	N2-C15-C32-C27	-104.6 (7)
C7—C8—C9—C14	163.8 (7)	C17—C15—C32—C27	28.5 (8)
C10-C9-C14-C13	-2.9 (11)	N2-C15-C32-C31	74.7 (7)
C8—C9—C14—C13	172.5 (8)	C17—C15—C32—C31	-152.2 (5)
C9-C14-C13-C12	1.3 (13)	O1-C18-N1-N1	0.0 (5)
C14—C13—C12—C11	-3.3 (14)	C17—C18—N1—N1	0.0 (6)
C13-C12-C11-C10	6.8 (13)	N1-C18-N1-C19	0(100)
C14—C9—C10—C11	6.7 (12)	O1-C18-N1-C19	-178.6 (5)
C8—C9—C10—C11	-168.4 (7)	C17—C18—N1—C19	4.8 (9)
C12-C11-C10-C9	-8.7 (13)	C20-C19-N1-N1	0.0 (6)
N2-C15-C17-C25	40.5 (8)	C24—C19—N1—N1	0.0 (5)
C32-C15-C17-C25	-90.7 (7)	N1-C19-N1-C18	0(100)
N2-C15-C17-C18	-137.9 (5)	C20-C19-N1-C18	177.9 (6)
C32—C15—C17—C18	90.9 (6)	C24—C19—N1—C18	-2.9 (8)
C25-C17-C18-N1	-3.5 (9)	O2—C6—N2—C8	-162.8 (6)
C15-C17-C18-N1	175.0 (6)	O2—C6—N2—C8	-162.8 (6)
C25-C17-C18-N1	-3.5 (9)	C5—C6—N2—C8	16.9 (8)
C15-C17-C18-N1	175.0 (6)	O2—C6—N2—C15	10.9 (9)
C25—C17—C18—O1	179.7 (5)	O2—C6—N2—C15	10.9 (9)
C15—C17—C18—O1	-1.7 (7)	C5-C6-N2-C15	-169.4 (5)
N1-C19-C20-C21	-179.4 (6)	C9—C8—N2—C6	112.1 (6)
N1-C19-C20-C21	-179.4 (6)	C7—C8—N2—C6	-119.0 (7)
C24—C19—C20—C21	1.3 (10)	C9—C8—N2—C15	-61.8 (7)
C19—C20—C21—C22	0.2 (11)	C7—C8—N2—C15	67.2 (7)
C20-C21-C22-C23	-1.7 (11)	C17—C15—N2—C6	-83.9 (6)
C20-C21-C22-Br1	177.6 (6)	C32—C15—N2—C6	48.9 (7)
C21—C22—C23—C24	1.6 (11)	C17—C15—N2—C8	90.3 (6)
Br1-C22-C23-C24	-177.7 (5)	C32-C15-N2-C8	-137.0 (5)
C22—C23—C24—C25	179.4 (6)	C1—C2—N3—C3	-56.3 (11)
C22—C23—C24—C19	0.0 (9)	C1—C2—N3—C5	179.0 (8)
N1-C19-C24-C23	179.4 (6)	C4—C3—N3—C2	56.6 (10)
N1-C19-C24-C23	179.4 (6)	C4—C3—N3—C5	-179.1 (7)
C20-C19-C24-C23	-1.4 (8)	C6—C5—N3—C2	-177.6 (7)
N1-C19-C24-C25	-0.1 (8)	C6—C5—N3—C3	59.4 (7)
N1-C19-C24-C25	-0.1 (8)	N1-C18-O1-C26	0.0 (9)
C20—C19—C24—C25	179.1 (6)	N1-C18-O1-C26	0.0 (9)
C18-C17-C25-C24	0.1 (8)	C17-C18-O1-C26	176.9 (6)
C15-C17-C25-C24	-178.3 (6)	N2—C6—O2—O2	0.0 (5)
C23—C24—C25—C17	-178.0 (6)	C5—C6—O2—O2	0.0 (5)
C19—C24—C25—C17	1.4 (8)	C2—C1—O3—C4	-57.8 (13)
C32—C31—C30—C29	-0.5 (10)	C3—C4—O3—C1	58.1 (12)

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	D—H··· A
C8—H8…N3	0.98	2.55	3.105 (7)	116
C25—H25····O2	0.93	2.45	3.153 (7)	133

C15—H15…O1	0.98	2.24	2.722 (8)	109
C30—H30····O2 ⁱ	0.93	2.59	3.399 (10)	145
C7—H7B···Cg4 ⁱⁱ	0.96	3.15	3.988 (8)	147
C23—H23····Cg5 ⁱⁱⁱ	0.93	2.79	3.662 (8)	157

Symmetry codes: (i) *x*-1, *y*, *z*; (ii) *x*, *y*, *z*+1; (iii) *x*+1, *y*, *z*.

Fig. 1

